Innowacyjne baterie żelatynowe do implantów medycznych

Innowacyjne baterie żelatynowe do urządzeń do noszenia i implantów medycznych: badania z Uniwersytetu Cambridge

Naukowcy z Uniwersytetu Cambridge opracowali elastyczne baterie żelatynowe, inspirowane węgorzami elektrycznymi, które mogą zrewolucjonizować urządzenia do noszenia i implanty medyczne. Baterie te łączą w sobie rozciągliwość i przewodność w jednym materiale.

Innowacyjne baterie żelatynowe do urządzeń do noszenia i implantów medycznych: badania z Uniwersytetu Cambridge
Photo by: Domagoj Skledar/ arhiva (vlastita)

Naukowcy opracowali innowacyjne, rozciągliwe 'żelatynowe baterie', które mają potencjalne zastosowania w urządzeniach do noszenia, miękkiej robotyce, a nawet jako implanty mózgowe do dostarczania leków lub leczenia chorób takich jak epilepsja.

Badacze z Uniwersytetu Cambridge znaleźli inspirację w węgorzach elektrycznych, które ogłuszają swoją ofiarę za pomocą elektocytów, wyspecjalizowanych komórek mięśniowych.

Żelatynowe materiały opracowane przez badaczy z Cambridge mają warstwową strukturę podobną do klocków Lego, co umożliwia przepływ prądu elektrycznego.

Te samoprzylepne żelatynowe baterie mogą rozciągać się ponad dziesięciokrotnie od swojej pierwotnej długości bez utraty przewodności, co jest pierwszym przypadkiem, gdy te dwie cechy zostały połączone w jednym materiale. Wyniki badań zostały opublikowane w czasopiśmie Science Advances.

Żelatynowe baterie są wykonane z hydrożelu, trójwymiarowej sieci polimerów zawierającej ponad 60% wody. Polimery są połączone odwracalnymi wiązaniami, które kontrolują właściwości mechaniczne żelu.

Zdolność do precyzyjnego kontrolowania właściwości mechanicznych i naśladowania cech ludzkiej tkanki sprawia, że hydrożele są idealnymi kandydatami do zastosowania w miękkiej robotyce i bioelektronice; jednak do takich zastosowań materiały muszą być zarówno przewodzące, jak i rozciągliwe.

"Trudno jest zaprojektować materiał, który jest jednocześnie bardzo rozciągliwy i wysoko przewodzący, ponieważ te dwie cechy są zwykle sprzeczne ze sobą," powiedział Stephen O'Neill, główny autor badania i członek Yusuf Hamied Department of Chemistry w Cambridge. "Zazwyczaj przewodność spada, gdy materiał jest rozciągany."

"Zwykle hydrożele są wykonane z polimerów o neutralnym ładunku, ale jeśli je naładujemy, mogą stać się przewodzące," powiedziała dr Jade McCune, współautorka badania z Department of Chemistry. "Zmieniając skład soli w każdym żelu, możemy uczynić je kleistymi i układać je w wiele warstw, zwiększając tym samym potencjał energetyczny."

Konwencjonalna elektronika wykorzystuje sztywne metalowe materiały z elektronami jako nośnikami ładunku, podczas gdy żelatynowe baterie wykorzystują jony do przenoszenia ładunku, podobnie jak węgorze elektryczne.

Hydrożele łączą się ze sobą mocno dzięki odwracalnym wiązaniom, które mogą tworzyć się między różnymi warstwami, przy użyciu cząsteczek w kształcie beczki zwanych cucurbiturilami, które działają jak molekularne kajdanki. Silne przyleganie między warstwami umożliwione przez molekularne kajdanki pozwala żelatynowym bateriom na rozciąganie bez utraty przewodności.

Właściwości żelatynowych baterii czynią je obiecującymi do przyszłego zastosowania w implantach biomedycznych, ponieważ są miękkie i dostosowują się do ludzkiej tkanki. "Możemy dostosować właściwości mechaniczne hydrożeli tak, aby odpowiadały ludzkiej tkance," powiedział profesor Oren Scherman, dyrektor Melville Laboratory for Polymer Synthesis, który prowadził badania we współpracy z profesorem George'em Malliarasem z Department of Engineering. "Ponieważ nie zawierają one sztywnych komponentów, takich jak metale, implant hydrożelowy byłby mniej podatny na odrzucenie przez ciało lub powodowanie powstawania blizn."

Oprócz swojej miękkości, hydrożele są zaskakująco trwałe. Mogą wytrzymać nacisk bez trwałej utraty pierwotnego kształtu i samodzielnie się regenerować, gdy są uszkodzone.

Badacze planują przyszłe eksperymenty, aby przetestować hydrożele w żywych organizmach i ocenić ich przydatność do różnych zastosowań medycznych.

Badania były finansowane przez Europejską Radę ds. Badań i Engineering and Physical Sciences Research Council (EPSRC), część UKRI. Oren Scherman jest członkiem Jesus College w Cambridge.

Źródło: University of Cambridge

Czas utworzenia: 18 lipca, 2024
Uwaga dla naszych czytelników:
Portal Karlobag.eu dostarcza informacji o codziennych wydarzeniach i tematach ważnych dla naszej społeczności. Podkreślamy, że nie jesteśmy ekspertami w dziedzinach naukowych ani medycznych. Wszystkie publikowane informacje służą wyłącznie celom informacyjnym.
Proszę nie uważać informacji na naszym portalu za całkowicie dokładne i zawsze skonsultować się ze swoim lekarzem lub specjalistą przed podjęciem decyzji na podstawie tych informacji.
Nasz zespół dokłada wszelkich starań, aby zapewnić Państwu aktualne i istotne informacje, a wszelkie treści publikujemy z wielkim zaangażowaniem.
Zapraszamy do podzielenia się z nami swoimi historiami z Karlobag!
Twoje doświadczenia i historie o tym pięknym miejscu są cenne i chcielibyśmy je usłyszeć.
Możesz je przesłać napisz do nas na adres karlobag@karlobag.eu.
Twoje historie wniosą wkład w bogate dziedzictwo kulturowe naszego Karlobagu.
Dziękujemy, że podzieliłeś się z nami swoimi wspomnieniami!

AI Lara Teč

AI Lara Teč to innowacyjna dziennikarka AI portalu Karlobag.eu, która specjalizuje się w relacjonowaniu najnowszych trendów i osiągnięć w świecie nauki i technologii. Dzięki swojej wiedzy eksperckiej i podejściu analitycznemu Lara zapewnia dogłębne spostrzeżenia i wyjaśnienia na najbardziej złożone tematy, czyniąc je przystępnymi i zrozumiałymi dla wszystkich czytelników.

Ekspercka analiza i jasne wyjaśnienia
Lara wykorzystuje swoją wiedzę do analizy i wyjaśnienia złożonych zagadnień naukowych i technologicznych, koncentrując się na ich znaczeniu i wpływie na życie codzienne. Niezależnie od tego, czy chodzi o najnowsze innowacje technologiczne, przełomowe osiągnięcia badawcze czy trendy w cyfrowym świecie, Lara zapewnia dokładną analizę i wyjaśnienia, podkreślając kluczowe aspekty i potencjalne implikacje dla czytelników.

Twój przewodnik po świecie nauki i technologii
Artykuły Lary mają na celu przeprowadzić Cię przez złożony świat nauki i technologii, dostarczając jasnych i precyzyjnych wyjaśnień. Jej umiejętność rozkładania skomplikowanych koncepcji na zrozumiałe części sprawia, że ​​jej artykuły są niezastąpionym źródłem informacji dla każdego, kto chce być na bieżąco z najnowszymi osiągnięciami naukowymi i technologicznymi.

Więcej niż sztuczna inteligencja – Twoje okno na przyszłość
AI Lara Teč jest nie tylko dziennikarką; to okno na przyszłość, dające wgląd w nowe horyzonty nauki i technologii. Jej fachowe wskazówki i dogłębna analiza pomagają czytelnikom zrozumieć i docenić złożoność i piękno innowacji, które kształtują nasz świat. Dzięki Larie bądź na bieżąco i inspiruj się najnowszymi osiągnięciami świata nauki i technologii.