In einer Ära, in der die Erstellung von Bildern mit künstlicher Intelligenz (KI) der breiten Öffentlichkeit zugänglich geworden ist, wird das Erkennen gefälschter Bilder, insbesondere von Deepfakes, immer wichtiger. Neue Forschungen, die auf der Nationalen Astronomiekonferenz der Royal Astronomical Society in Hull vorgestellt wurden, zeigen, dass KI-generierte Deepfakes durch die Analyse der Augen ähnlich wie bei der Untersuchung von Galaxienbildern erkannt werden können.
Die Grundlage der Arbeit, die von dem Masterstudenten Adejumoke Owolabi an der Universität Hull erstellt wurde, liegt in den Reflexionen in den Augen der Menschen. Wenn die Reflexionen konsistent sind, ist das Bild wahrscheinlich echt. Wenn sie es nicht sind, handelt es sich höchstwahrscheinlich um einen Deepfake.
"Reflexionen in den Augen sind bei einer echten Person konsistent, aber bei einer gefälschten Person ungenau," betonte Kevin Pimbblet, Professor für Astrophysik und Direktor des Zentrums für Exzellenz in Datenwissenschaft, künstlicher Intelligenz und Modellierung an der Universität Hull.
Forscher analysierten die Lichtreflexionen in den Augen von Menschen auf realen und KI-generierten Bildern. Sie verwendeten dann Methoden, die üblicherweise in der Astronomie eingesetzt werden, um Reflexionen zu quantifizieren und die Konsistenz zwischen den Reflexionen des linken und des rechten Auges zu überprüfen.
Gefälschte Bilder weisen oft keine Konsistenz in den Reflexionen zwischen den Augen auf, während echte Bilder im Allgemeinen die gleichen Reflexionen in beiden Augen zeigen.
"Um die Form von Galaxien zu messen, analysieren wir, ob sie zentral kompakt, symmetrisch und wie glatt sie sind. Wir analysieren die Lichtverteilung," sagte Professor Pimbblet.
"Wir erkennen Reflexionen automatisch und führen ihre morphologischen Merkmale durch CAS [Konzentration, Asymmetrie, Glätte] und Gini-Indizes durch, um die Ähnlichkeit zwischen den linken und rechten Augen zu vergleichen.
Die Ergebnisse zeigen, dass Deepfakes bestimmte Unterschiede zwischen den Augenpaaren aufweisen."
Der Gini-Koeffizient wird üblicherweise verwendet, um zu messen, wie das Licht in einem Galaxienbild auf die Pixel verteilt ist. Diese Messung erfolgt, indem die Pixel, aus denen das Galaxienbild besteht, in aufsteigender Reihenfolge nach Fluss geordnet und dann mit dem verglichen werden, was von einer perfekt gleichmäßigen Flussverteilung erwartet würde.
Ein Gini-Wert von 0 zeigt eine Galaxie an, in der das Licht gleichmäßig über alle Pixel des Bildes verteilt ist, während ein Gini-Wert von 1 eine Galaxie anzeigt, bei der das gesamte Licht in einem Pixel konzentriert ist.
Das Team testete auch CAS-Parameter, ein Werkzeug, das ursprünglich von Astronomen entwickelt wurde, um die Lichtverteilung von Galaxien zu messen, um deren Morphologie zu bestimmen, stellte jedoch fest, dass sie keine erfolgreichen Prädiktoren für gefälschte Augen waren.
"Es ist wichtig zu beachten, dass dies keine magische Lösung zur Erkennung gefälschter Bilder ist," fügte Professor Pimbblet hinzu. "Es gibt falsch-positive und falsch-negative Ergebnisse; es wird nicht alles erkannt. Aber diese Methode gibt uns eine Grundlage, einen Angriffsplan, im Rennen zur Erkennung von Deepfakes."
Diese Arbeit stellt einen bedeutenden Schritt nach vorne bei der Entwicklung von Technologien zur Erkennung gefälschter Bilder dar. Da die Deepfake-Technologie weiter fortschreitet, wird es immer wichtiger, zuverlässige Methoden zur Unterscheidung von echten und gefälschten Bildern zu haben. Weitere Forschungen und Verfeinerungen dieser Methoden werden erwartet, um die Genauigkeit der Deepfake-Erkennung weiter zu verbessern und so zusätzlichen Schutz vor potenziellem Missbrauch zu bieten.
Die Entwicklung von Technologien zur Erkennung von Deepfakes hat breite Anwendungen, einschließlich Sicherheit, Journalismus und Justiz. In einer Welt, in der visuelle Informationen entscheidend sind, wird die Fähigkeit, gefälschte Bilder zu erkennen, zu einer unverzichtbaren Fähigkeit. Diese Ergebnisse betonen die Notwendigkeit eines interdisziplinären Ansatzes, der Wissen aus Astronomie, künstlicher Intelligenz und Forensik kombiniert, um den Herausforderungen der Deepfake-Ära effektiv zu begegnen.
Quelle: Royal Astronomical Society
Erstellungszeitpunkt: 29 Juli, 2024
Hinweis für unsere Leser:
Das Portal Karlobag.eu bietet Informationen zu täglichen Ereignissen und Themen, die für unsere Community wichtig sind. Wir betonen, dass wir keine Experten auf wissenschaftlichen oder medizinischen Gebieten sind. Alle veröffentlichten Informationen dienen ausschließlich Informationszwecken.
Bitte betrachten Sie die Informationen auf unserem Portal nicht als völlig korrekt und konsultieren Sie immer Ihren eigenen Arzt oder Fachmann, bevor Sie Entscheidungen auf der Grundlage dieser Informationen treffen.
Unser Team ist bestrebt, Sie mit aktuellen und relevanten Informationen zu versorgen und wir veröffentlichen alle Inhalte mit großem Engagement.
Wir laden Sie ein, Ihre Geschichten aus Karlobag mit uns zu teilen!
Ihre Erfahrungen und Geschichten über diesen wunderschönen Ort sind wertvoll und wir würden sie gerne hören.
Sie können sie gerne senden an uns unter karlobag@karlobag.eu.
Ihre Geschichten werden zum reichen kulturellen Erbe unseres Karlobag beitragen.
Vielen Dank, dass Sie Ihre Erinnerungen mit uns teilen!